

46th Annual Meeting of the EBMT 14th March 2021

The impact of HSCT at the ruxolitinib era

Marie Robin, MD, PhD Hôpital Saint-Louis, AP-HP INSERM1131, Université Paris, France

Timeline

- Expectations with ruxolitinib
- Expectations with transplantation
- The effect of transplantation in MF patients
- The use of ruxolinitib before HSCT
- The use of ruxolitinib after HSCT

DISCLOSURES OF COMMERCIAL SUPPORT

Name of Company	Research support	Employee	Consultant	Stockholder	Speaker's Bureau	Advisory Board	Other
Novartis	x						
Neovii	x						
Medac	x						

Expectations with ruxolitinib

PRO

- approved drug in MF
- pills
- good tolerance
- quickly efficient
- symptoms relief
- survival advantage

CON

- no CR
- small proportion of PR
- limited duration of remission
- cytopenia
- immune defect
- effect on survival?
- effect on AML transformation?

Long-term COMFORT I

at 5 years

- Advantage in survival
- Constant risk of death

Verstovsek et al. Journal of Hematology & Oncology (2017) 10:55

Poor life expectancy after rux discontinuation

- ✓ A centralized European data base 524 patients received ruxolitinib
- ✓ At 3 years, 40.8% had stopped

Cancer 2020. Palandri

Expectations with transplantation

PRO

- curative
- long-term survivors
- long-term data
- decreases the risk of transformation and progression

CON

- not possible for all
- invasive: hospitalization...
- immune failure
- GVHD
- rejection

 Risk factors related to disease risk, donor and patient (age) The majority of events (GVHD, death, relapse, rejection) occurs within 24 months

Early mortality vs long-term survivors

✓ 2000-2014

- ✓ CIBMTR & MNRC
- Excess of mortality the first year for all groups
- No difference in survival in allo but low risk after one year
- advantage of long-term survival

12 MAY 2020 · VOLUME 4. NUMBER 9

 multivariable model confirmed the advantage of OS

Goldwin et al

blood advances

Early mortality vs long-term survivors

(Blood. 2015;125(21):3347-3350)

Time after diagnosis (y)

Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis

Nicolaus Kröger,¹ Toni Giorgino,² Bart L. Scott,³ Markus Ditschkowski,⁴ Haefaa Alchalby,¹ Francisco Cervantes,⁵ Alessandro Vannucchi,⁶ Mario Cazzola,⁷ Enrica Morra,⁸ Tatjana Zabelina,¹ Margherita Maffioli,⁹ Arturo Pereira,⁵ Dietrich Beelen,⁴ H. Joachim Deeg,³ and Francesco Passamonti⁹

(Blood. 2015;125(21):3347-3350)

Survival propertient	Transplant-cohort			Non-transplant- cohort		
Survival proportion		real	10		rear	10
	1	5			5	
Low risk	100	69	60			92
		(48-99)	(38-95)	(96-100)	(90-99)	(86-99)
Int-1	78	52	41	57	, ,	63
	(55-100)	(33-83)	(24-70)	(93-100)	(67-89)	(51-77)
Int-2	82	50	32		- -	11
	(68-98)	(37-67)	(21-48)	(67-88)	(32-54)	(5-22)
High risk	65	32	27			(1)
	(46-92)	(19-56)	(15-49)	(30-100)	(3-44)	(0-10)

HSCT improves OS in int-2 and high MF patients
no patient were treated by ruxolitinib

But patients arrived now at HSCT on ruxolitinib so what is the impact on post-transplant outcome?

Rux before HSCT

Ruxolitinib could improve post-HSCT outcome of patients by:

- decreasing general symptoms and improving performance status
- reducing spleen size
- decreasing inflammatory cytokines

Ruxolitinib before HSCT

A multicenter collaborative retrospective including centres from CA, US, UK

Biol Blood Marrow Transplant 22 (2016) 432-440

"

In patients who are progressive under ruxolitinib, outcome after HSCT is worse

Ruxolitinib & / or HSCT

Multiple variables model; transplant no transplant, CIBMTR study

	HR	95% CI	Overall P
OS (≤12 mo)			<.0001
HCT	1		
Non-HCT	0.325	0.260, 0.406	
OS (>12 mo)			<.0001
HCT	1		
Non-HCT	2.109	1.656, 2.685	
Ruxolitinib			<.0001
No	1		
Yes	0.530	0.444, 0.633	

• DIPSS, Cytogenetics, KPS are also prognostic

Goldwin et al

JAK ALLO

Ruxolitinib vs HSCT

- Long-term survivors are observed after HSCT, the benefit of HSCT is late as compared to ruxo therapy.
- ✓ HSCT remains the only curative therapy
- ✓ HSCT is increasingly used in MF patients

Development of allogeneic HSCT of myelofibrosis in Europe (EBMT)

testing pre-transplantation ruxolitinib

- MDRC114: graft failure and NRM / previous MRC110 trial (BBMT 2019. Gupta)
- FHRC: 2-year OS / historical (BBMT 2020 Salit)
- JAK-ALLO: 1-year DFS / historical (BMT 2020 Robin)

Procedure	Pre-graft response	Graft failure/ NRM	OS	AGVHD/ CGVHD
Pts < 6m Ruxo Tapering \rightarrow D-5* FB4+/-ATG N=21				
Pts on ruxo Flu mel / Bu Cy Tapering \rightarrow D-4* N=28				
Ruxo at inclusion Flu mel+/-ATG Tapering / abrupt stop N=58 (transplanted)				

Procedure	Pre-graft response	Graft failure/ NRM	OS	AGVHD/ CGVHD
Pts < 6m Ruxo Tapering \rightarrow D-5* FB4+/-ATG N=21	47%			
Pts on ruxo Flu mel / Bu Cy Tapering \rightarrow D-4* N=28	NA			
Ruxo at inclusion Flu mel+/-ATG Tapering / abrupt stop N=58 (transplanted)	31% PR			

Procedure	Pre-graft response	Graft failure/ NRM	OS	AGVHD/ CGVHD
Pts < 6m Ruxo Tapering → D-5* FB4+/-ATG N=21	47%	3 GF 28% at 2-y	61% at 2-y	
Pts on ruxo Flu mel / Bu Cy Tapering \rightarrow D-4* N=28	NA	No GF 2 pts	86% at 2-y	
Ruxo at inclusion Flu mel+/-ATG Tapering / abrupt stop N=58 (transplanted)	25% PR	1 GF	55% at 2-y	

Procedure	Pre-graft response	Graft failure/ NRM	OS	AGVHD/ CGVHD
Pts < 6m Ruxo Tapering \rightarrow D-5* FB4+/-ATG N=21	47%	3 GF 28% at 2-y	61% at 2-y	64%/76%
Pts on ruxo Flu mel / Bu Cy Tapering \rightarrow D-4* N=28	NA	No GF 2 pts	86% at 2-y	78%/41%
Ruxo at inclusion Flu mel+/-ATG Tapering / abrupt stop N=58 (transplanted)	25% PR	1 GF	55% at 2-y	66%/ND

Hyper acute and severe GVHD

JAK ALLO trial

in press BMT. Robin et al 27

Is incidence of GVHD higher after ruxolitinib?

What were incidences of acute GVHD before ruxolitinib era in MF?

Studies	N=
Blood 1999	55
Blood 2003	56
BBMT 2007	104
Haem 2008	100
Blood 2009	103
BBMT 2009	289
BJH 2011	147
Haem 2012	76
BBMT 2014	233
Blood 2014	66
BBMT 2017	223

TRM	Survival
27% (1 y)	47% (5 y)
32% (3 y)	58% (3 y)
ND	61% (5 y)
43% (3 y)	42% (3 y)
16% (1y)	67% (5 y)
35-50%(5 y)	37% (5 y)
29% (4 y)	39% (4 y)
28% (1y)	53% (5y)
24% (5 y)	47% (5y)
22 (S) VS 59 (UR)	72 vs 32%
20% - 40 (HR)%	75%- 35% (5y)

Studies	N=	AGVHD	TRM	Survival
Blood 1999	55	60%/33%	27% (1 y)	47% (5 y)
Blood 2003	56	68%	32% (3 y)	58% (3 y)
BBMT 2007	104	64%	ND	61% (5 y)
Haem 2008	100	41%	43% (3 y)	42% (3 y)
Blood 2009	103	27%	16% (1y)	67% (5 y)
BBMT 2009	289	43%	35-50%(5 у)	37% (5 y)
BJH 2011	147	43%	29% (4 y)	39% (4 y)
Haem 2012	76	32%	28% (1y)	53% (5y)
BBMT 2014	233	37%	24% (5 y)	47% (5y)
Blood 2014	66	39%	22 (S) VS 59 (UR)	72 vs 32%
BBMT 2017	223	66%	20% - 40 (HR)%	75%- 35% (5y)

Pro-inflammatory cytokines

A specific profile is associated with patients with GVHD

JAK ALLO trial

in press BMT. Robin et al

Can we use ruxolitinib to prevent GVHD?

Ruxolitinib has been approved by FDA for steroid resistant GVHD

Peri-transplant ruxolitinib

- A pilot study of 12 patients
- 5mg BID from conditioning to engraftment stopped on day +28
- 2/10 had to stop before D+28 because of cytopenia
- 3 patients developed late acute GVHD
- No death (FU 17 months)
- Decrease in some pro-inflammatory cytokines at time of HSCT

Biol Blood Marrow Transplant 24 (2018) 2152–2156 Kroger et al

Conclusion

- Ruxolitinib may be useful to improve general performance status and reduce spleen size before HSCT
- Ruxolitinib does not replace HSCT
- Candidates to transplant should not be treated by ruxolitinib until progression
- The timing for ruxolitinib peri-transplantation remains to determine
- Small doses after HSCT may prevent GVHD efficiency

European Society for Blood and Marrow Transplantation

ASSISTANCE

PUBLIQUE

CMWP

I Yakoub Agha N Kröger D Mc Lornan

T Czerw JC Hernandez-Boluda P Hayden C Scheid F Onida S Schoenland O Tournilhac L Garderet M van Gelder

HÔPITAUX

DE PARIS

G Socié R Peffault F Sicre D Michonneau A Xhhard JJ Kiladjian S Giraudier B Cassinat MH Schlageter A Huynh Y Beguin JH Dalle S N Guyen R Devillier E Daguindaux Y Chalandon JO Bay E Baudoux H Labussiere

F Colledani E Forcade P Turlure T Guillaume C Pochon **AP** Pickaert A Wallart N Raus M Pereira MT Rubio