

POINT-OF-CARE / DECENTRALIZED CAR-T CELL PRODUCTION

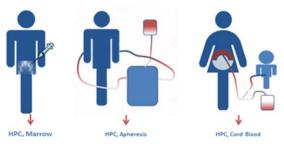
Yves BEGUIN

Dpt of Hematology, CHU & U of Liège, Belgium

CAR-T cells **Belgian legislation**

Human Bodily Material Collected by MD in hospitals

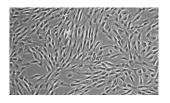
Biobank

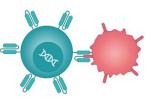

No therapeutic use in humans

Therapeutic use

Non-substantial manipulation

- **Cell & tissue bank (hospital)**
- **Intermediate structure (commercial)**





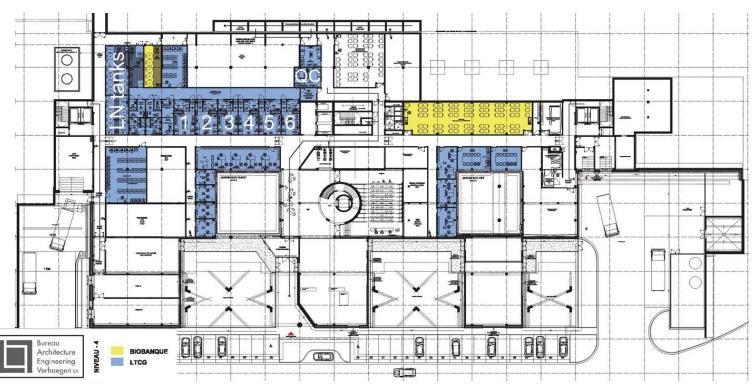
Substantial transformation

→ ATMP : Advanced Therapeutic Medicinal Product (cells, genes, tissues, combinations)

→ GMP : Good Manufacturing Practice production

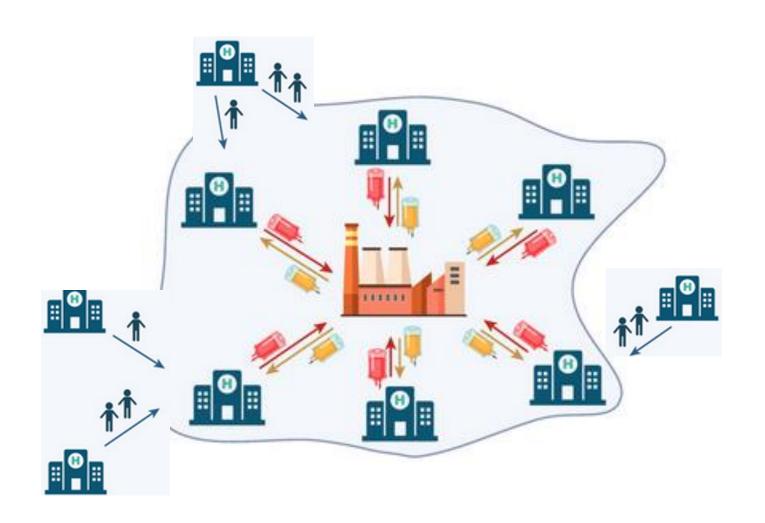

Loi du 19 décembre 2008 relative à l'obtention et à l'utilisation de matériel corporel humain destiné à des applications médicales humaines ou à des fins de recherche scientifique

Liège Laboratory of Cell & Gene Therapy Production & QC facilities


ICAB

Institut de Cancérologie Arsène Burny

LTCG


6 GMP facilities 1 QC lab 75 m² of LN storage Storage areas Offices

Liège Laboratory of Cell & Gene Therapy MSC: from clinical grade to GMP

Personnel + ↑ ↑ ↑ ↑ • QC ≠ Production • Instrumentation • Personne qualifiée	Locaux Classe C ↓ Classe B	Habillage	Monitoring environnemental //// Fréquence, Nombre et type de prélèvements
 Documentation Déviations OOS CCR GMP = Generate more paper 	 Média simulation + Média simulation • 3X nouveau process • 2X/an par process • 1X/an par opérateur 	Validation Validation du process ↓ Validation process, contrôles de qualité, nettoyage Protocoles & rapports	Réactifs & Consommables + Quarantaine/libération (Spécifications) Evaluation fournisseurs
Equipements Maintenance annuelle Procédures et IQ/OQ/PQ	Echantillons rétention et référence + d'échantillons (Identification et analyses)	Contrôles de qualité Changement de sous- traitants (certifiés GMP)	Process •Retrait antibiotiques •Trypsine recombinante (porcine) •Cellstacks

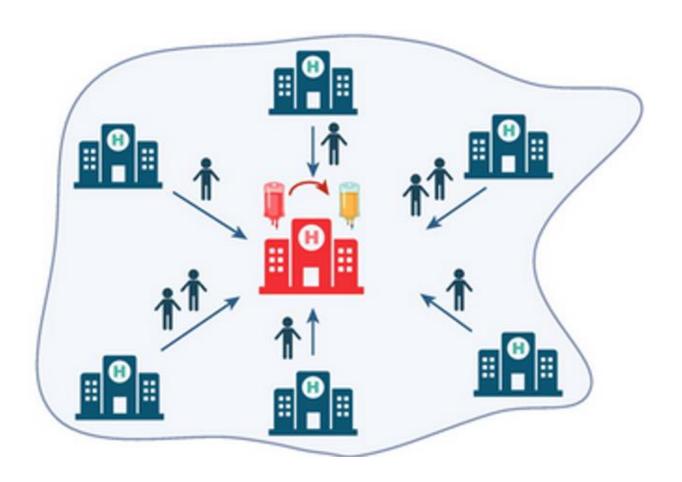
CAR-T cells Classical commercial CAR-T cell production

B-cell malignancies: CAR-T cell products

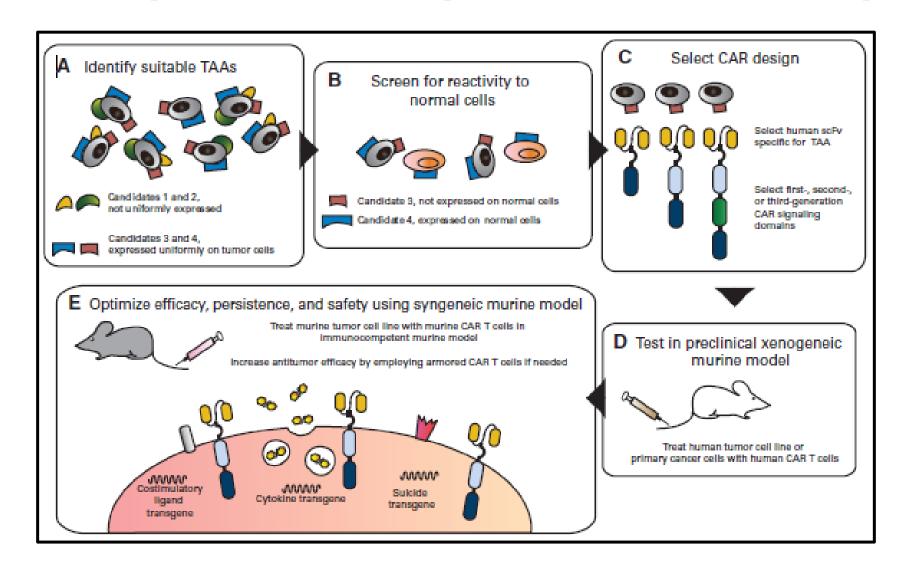
Second generation CARs

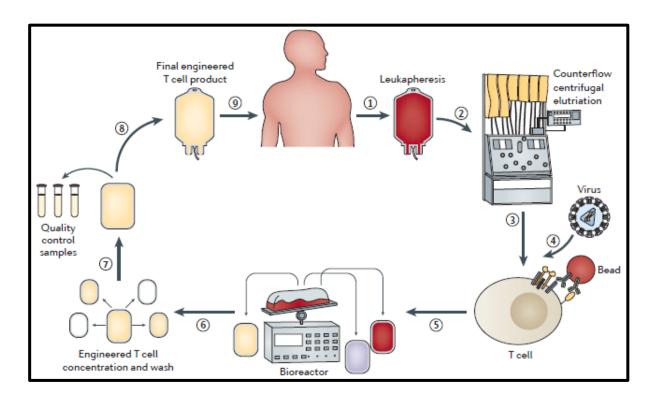
Co-stimulation

CD28


- faster in vivo expansion
- higher peak levels

4-1BB


- drive towards CM phenotype
- longer persistence
- less exhaustion


Classical academic research CAR-T cell production

Academic production: pre-clinical development

Academic production: CAR-T manufacturing

Table 8.3 CAR-T manufacturing methodology

	Potential methods	Timepoint
Step 1: T cell enrichment post- leukapheresis (optional)	Ficoll density gradient centrifugation; elutriation; immunomagnetic bead separation	Day 1
Step 2: T cell activation using synthetic antigen presenting technologies (CD3 +/— CD28) (required)	Soluble monoclonal antibodies; Para-magnetic anti-CD3/CD28 antibody coated beads; polymeric biodegradable CD3/28 incorporating nanomatrix (TransAct TM)	Days 1, 2
Step 3: T cell stimulation (required)	IL-2, IL-7, and IL-15 in the culture medium (as per protocol) (Hoffmann et al. 2018; Gong et al. 2019)	From day 1 onwards
Step 4: Gene delivery/transduction with a retroviral or lentiviral CAR vector (required)	In some processes, retronectin or Vectofusin® is used to enhance transduction (optional)	Days 2, 3
Step 5: T cell expansion (required)	T-flasks, plates or culture bags; bioreactors, e.g., G-Rex TM flask (Wilson Wolf Manufacturing); Xuri WAVE TM Bioreactor (GE Life Systems); CliniMACS Prodigy TM (Miltenyi BioTec)	Days 3, 4 and onwards
Step 6: T cell harvest and cryopreservation (required)	The cryopreservation methodology often mirrors processes defined for haematopoietic cells. Methods include passive freezing (-80 °C freezer) and controlled-rate freezing	Day 8 onwards
Step 7: CAR-T cell quality assurance control and release testing	In-process and end of process controls are taken to ensure the product complies with release criteria specifications	Day 8 onwards

CAR-T cellsAcademic production : QC

Vector production

Table 8.1 Quality control for the HEK293T master cell bank

Parameter	Method	Acceptance criteria
Appearance	Visual inspection	Presence of adherent cells with thin extensions
Sterility	Microbial growth	Sterile
Mycoplasma	PCR	Absent
Adventitious viruses	PCR	Absent
Karyotype	G-band staining	Informative
Cell viability (%) after thawing	Neubauer cell counting with trypan blue exclusion	>70%

 Table 8.2
 Quality control for GMP-grade virus production

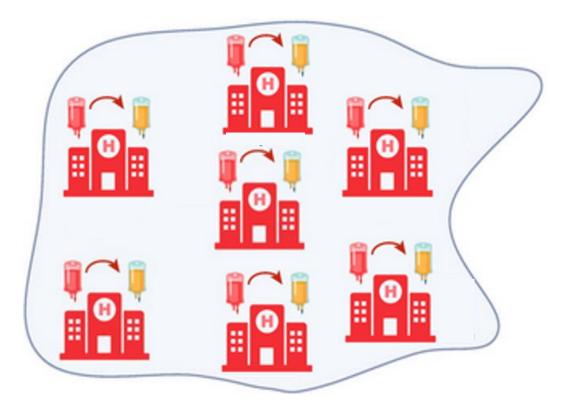
Parameter	Method	Acceptance criteria
Appearance	Visual inspection	Yellowish liquid solution
Viral titre	Limiting dilution	>3.75 × 10 ⁷ TU/mL
Sterility	Microbial growth	Sterile
Mycoplasma	PCR	Absent
Identity	PCR	Positive
Replication-competent lentivirus	Real-time PCR	Absent

CAR-T cell production

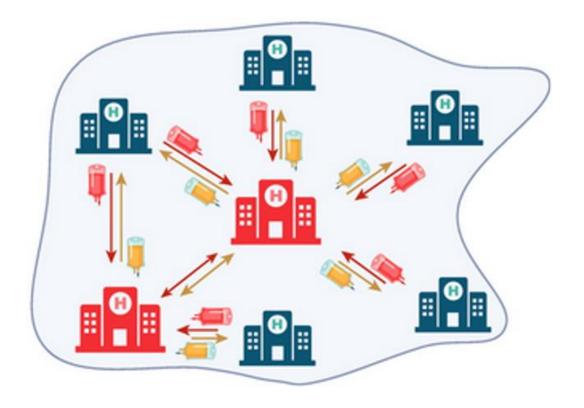
Table 8.4 Quality control of CAR-T cell biology and microbiology

Parameter	Method	Acceptance criteria
Appearance	Visual inspection	Cloudy liquid solution
CAR+ cells (%) ^a	Flow cytometry	>20%
CD3+ cells (%)	Flow cytometry	>70%
Cell viability (%)	Neubauer cell counting with trypan blue exclusion ^b	>70%
Sterility	Microbial growth E. Ph. 2.6.1	Sterile from bacteria/fungi
Mycoplasma	PCR ^c	Absent
Endotoxin	Chromogenic assay	<0.5 EU/mL
Optional/R&D		
CAR/CD45RA/CCR7 For detection of TE/ TEM/TEMRA/TCM/TN subpopulations	Flow cytometry	A high proportion of immature T cells is desirable for a long- lasting CAR-T cell effect in the patient
Cytotoxic potency	Cr-51 release assays in tumour CAR-T cell co-culture, assessed by flow cytometry	>40% killing at an effector/target ratio of 10:1 (or higher ratio) in a 4-h assay
Adventitious viruses	PCR	Absent
Number of transgene copies/cell	Real-time PCR (Kunz et al. 2019; Schubert et al. 2020)	<10 (range <7–15!) copies/cell ^d

^aAutomated cell counters, such as Luna™, are highly recommended

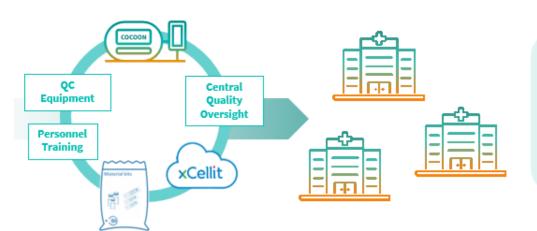

^bHighly specific detection reagents (e.g., the Miltenyi Detection ReagentTM) are strongly advised to distinguish CAR-T cells from the negative fraction

^cEuropean standards stipulate PCR methodology, in contrast to US regulations, which require serology


^dDiffers between countries and products

Point-of-care & decentralized CAR-T cell production

Point-of-care



Decentralized

Galapagos decentralized production

Enabling scalable and consistent decentralized production

- ✓ Consistency by design
- √ Globally scalable
- ✓ 24/7 technical support
- ✓ Centrally supplied equipment / material kits

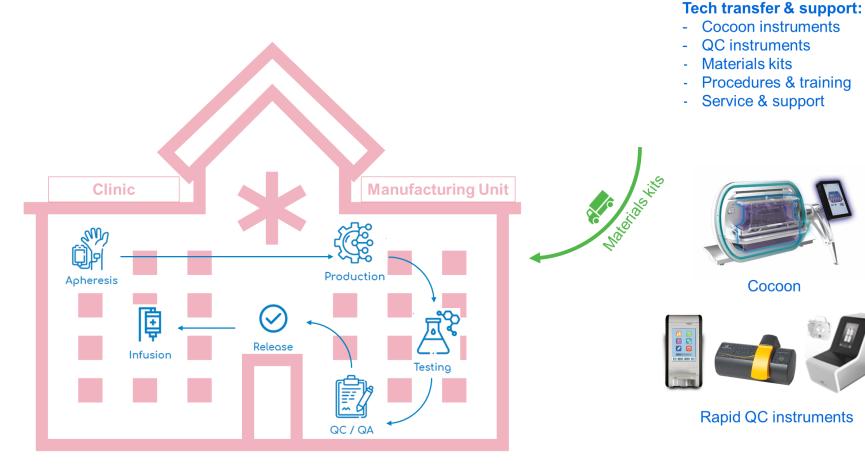
Clinical trials

- NHL: Atalanta-1

– CLL / RT : Euplagia-1

- MM: Papilio-1

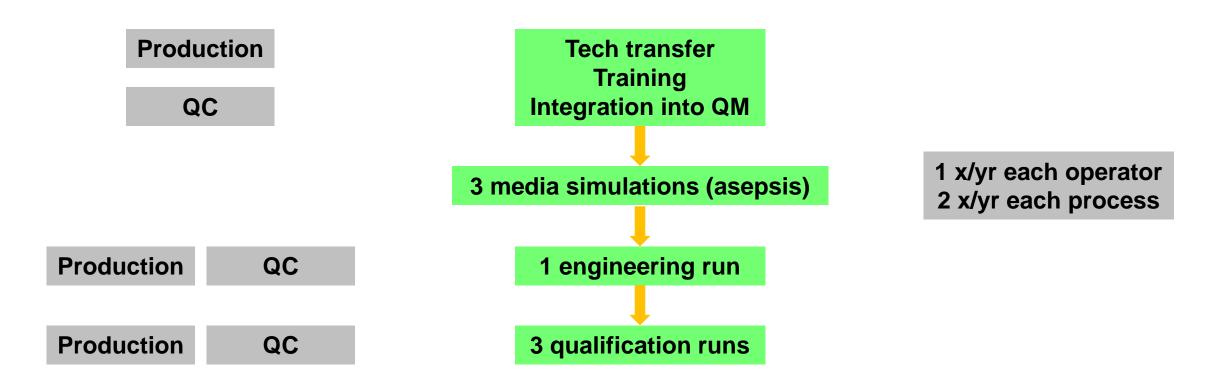
GMP production at a compliant manufacturing facility located at the clinic premises or in close proximity to the clinic


Galapagos decentralized production

Manufacturer

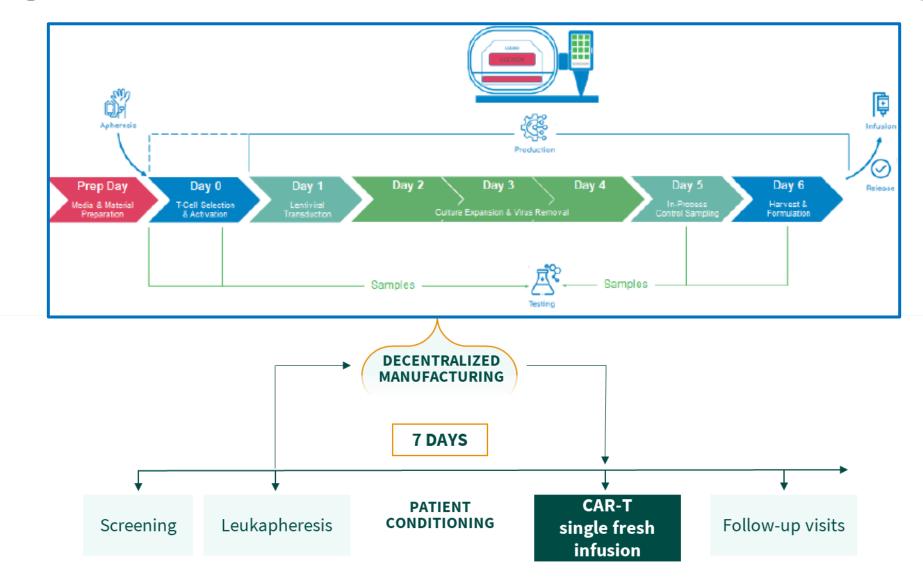
- Study Sponsor
- Real-time data capture
- Product responsibility

xCellit data platform



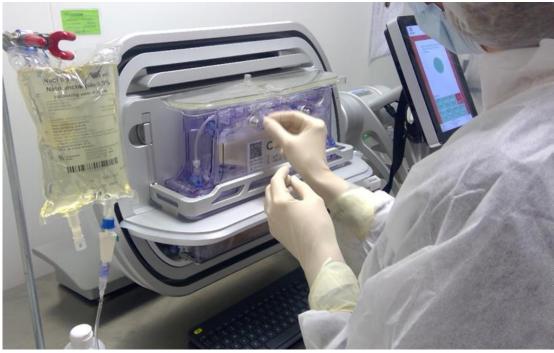
Cocoon

Site selection:


- Clinical CAR-T experience
- Cleanroom facility (class B-C)
- **Operators**

CAR-T cells Production qualification for phase I-II

Process qualification if all within specifications!


Galapagos decentralized production & patient journey

CAR-T CELLS

Production on Cocoon automated platform

CAR-T CELL THERAPY

CLINICAL TRIALS
NHL: ATALANTA

Seven-Day Vein-to-Vein Point-of-Care Manufactured CD19 CAR T Cells (GLPG5101) in R/R NHL: Results from the Phase 1/2 ATALANTA-1 Trial

MJ Kersten *et al*

Amsterdam, Leiden, Antwerp, Liège

Galapagos

EHA 2024

ATALANTA-1 Study Design and Objectives

Key eligibility criteria Decentralized No prior CD19-targeted therapies manufacturing Phase 1 dose escalation: DLBCL Day –35^b Day -7 Day 28 Day 0 - Primary refractory or first relapse Follow-up FL, MZL, MCL - Relapsed or refractory after two Day -6 to Day -4: prior treatments Flu/Cy conditioning chemo^c Phase 2 expansion cohorts: First **GLPG5101** single • DLBCL, HR DLBCL, a FL + MZL, Leukapheresis **Screening** response fresh infusion

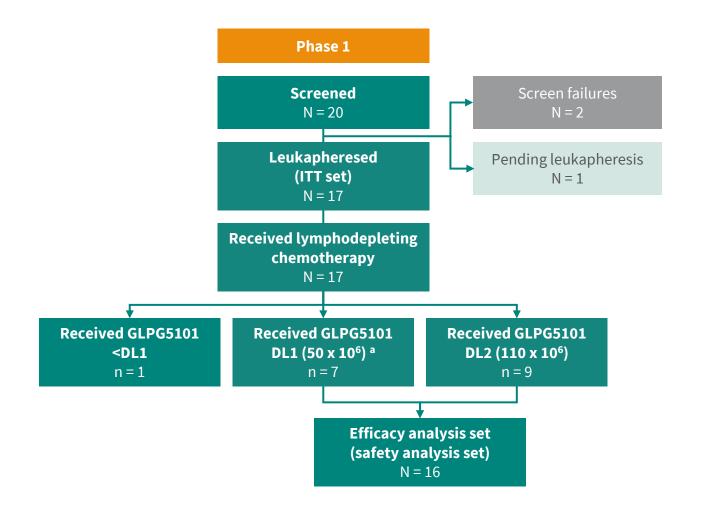
Phase 1 primary objectives:

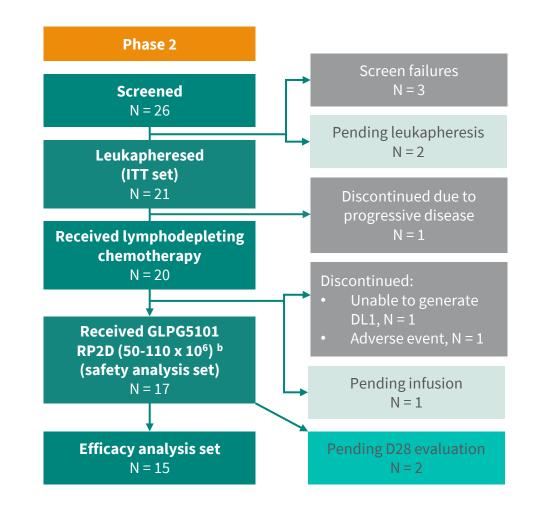
MCL, Burkitt lymphoma, PCNSL

Safety
Determination of a RP2D

Phase 2 primary objective: Efficacy (ORR)

Phase 1/2 secondary objectives:


Efficacy (CRR, DoR, MRD-, PFS, OS)
rmacokinetics and pharmacodynamic


assessment

Pharmacokinetics and pharmacodynamics Feasibility of decentralized manufacturing

^aIPI 3–5 or double/triple-hit lymphoma. ^bScreening could take place up to a maximum of 28 days prior to leukapheresis. ^cConditioning chemotherapy: fludarabine IV (30 mg/m²/day); cyclophosphamide IV (300 mg/m²/day). Cy, cyclophosphamide; FL, follicular lymphoma; Flu, fludarabine; (HR) DLBCL, (high-risk) diffuse large B-cell lymphoma; IPI, international prognostic index; IV, intravenous; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; ORR, objective response rate; PCNSL, primary central nervous system lymphoma; RP2D, recommended Phase 2 dose

Patient Disposition

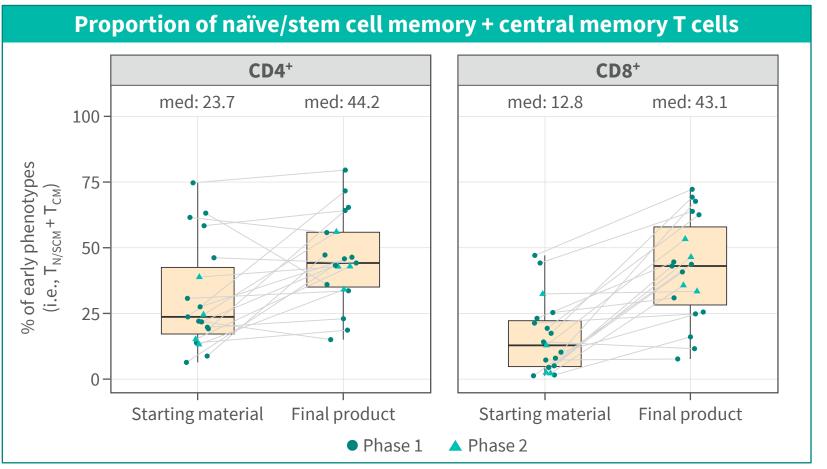
^aIncludes 3 patients who received DL1 instead of planned DL2, due to lower manufacturing yield. ^bSixteen patients received RP2D; one patient received <RP2D.

Data cutoff: December 20, 2023.

Decentralized Manufacturing

Enabling fresh product infusion with a 7-day vein-to-vein time

Median vein-to-vein time for product was **7 days** (range 7–13)



7 days n = 30 (88%) 8 days 13 days n = 2 (6%) n = 2 (6%)

- Short vein-to-vein time eliminated the need for bridging therapy
- GLPG5101 was administered as a **fresh product** to 32/34 (94%) patients
 - Two patients received a cryopreserved product (vein-to-vein time 13 days)

Product Characterization

Proportion of early phenotypes of CD4⁺ and CD8⁺ CAR T cells was increased in the final product compared with the starting material

Early phenotypes of CD4+ & CD8+ CAR T cells

=

Naïve/stem cell memory T cells (CD45RO-CD197+ T_{N/SCM})

+

Central memory T cells (CD45RO+CD197+T_{CM})

Exploratory flow cytometry analysis of T-cell subsets in the apheresis starting material and final product (gated on CAR $^+$ T cells for final product) for paired patient samples (N=19). CAR, chimeric antigen receptor; med, median; T_{CM} , central memory T cells; $T_{N/SCM}$, naïve/stem cell memory T cells

Data cutoff: September 01, 2023.

Demographics and Baseline Characteristics

High-risk and heavily pretreated patients were included

	Phase 1 (DL1 & 2)
	All patients N = 16
Age, median (range), years	65 (25–77)
Male, n (%)	12 (75)
NHL subtype, n (%) ^a	
DLBCL	9 (56)
MCL ^b	3 (19)
FL	3 (19)
MZL	1 (6)
IPI/MIPI/FLIPI score at screening, high risk, n (%)	6 (38)
ECOG PS at baseline, n (%)	
0	6 (38)
1	9 (56)
2	1 (6)
Previous therapies, median (range)	3 (1-7)
Ann Arbor disease stage, n (%)	
II	1 (6)
III–IV	15 (94)

Phase 2
All patients N = 17
67 (45–81)
9 (53)
0
4 (24)
12 (71)
1 (6)
11 (65)
8 (47)
6 (35)
3 (18)
3 (2-11)
4 (24)
13 (76)

^aSum of percentages may be >100 due to rounding. ^bTwo patients with MCL were not included in the Phase 2 efficacy analysis set as the first response assessment data were not available at data cutoff.

Data cutoff: December 20, 2023.

DLBCL, diffuse large B-cell lymphoma; ECOG PS, Eastern Cooperative Oncology Group performance status; FL, follicular lymphoma; (M, FL)IPI, (MCL, FL) international prognostic index; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; NHL, non-Hodgkin lymphoma

Safety: TEAEs

Most Grade ≥3 TEAEs were hematological

	Phase 1 (DL1 & 2)	Phase 2
TEAEs up to 14 weeks after infusion	All patients N = 16	All patients N = 17
Any TEAE, n (%)	16 (100)	17 (100)
Any GLPG5101-related TEAE, n (%)	16 (100)	14 (82)
Serious TEAE, n (%)	5 (31)	3 (18)
TEAE leading to death, n (%)	1 (6)	0
Any Grade ≥3 TEAE, n (%)	16 (100)	14 (82)
Hematological Grade ≥3 TEAEs, n (%)		
Neutropenia ^a	15 (94)	12 (71)
Anemia ^b	6 (38)	1 (6)
Lymphopenia ^c	5 (31)	3 (18)
Thrombocytopenia ^d	4 (25)	4 (24)
Leukopenia ^e	6 (38)	5 (29)
Other Grade ≥3 TEAEs in ≥2 patients ^f , n (%)		
Pyrexia	2 (13)	1 (6)
Pleural effusion	2 (13)	0

alncludes neutropenia/neutrophil count decreased. blncludes anemia/hemoglobin decreased. clncludes lymphopenia/lymphocyte count decreased. dlncludes thrombocytopenia/platelet count decreased. elncludes leukopenia/white blood cell count decreased. fln either the Phase 1 or Phase 2 total population.

TEAE, treatment-emergent adverse event

Data cutoff: December 20, 2023.

Safety: AESIs and Deaths

The vast majority of CRS and ICANS events were low-grade

	Phase 1 (DL1 & 2)	
AESIs up to 14 weeks after infusion	All patients N = 16	
CRS (n, %)	7 (44)	
Grade 1	2 (13)	
Grade 2	3 (19)	
Grade 3	2 (13)	
ICANS (n, %)	6 (38)	
Grade 1	6 (38)	
Grade 2	0	
Grade 3	0	
Infections, Grade ≥3 (n, %)	1 (6)	
Prolonged cytopenia, ^a Grade ≥3, (n,%) 30 days after infusion ^b 60 days after infusion ^c	7 (47) 4 (27)	
Hemophagocytic lymphohistiocytosis, any grade $(n, \%)$	1 (6)	

Phase 2
All patients N = 17
5 (29)
4 (24)
1 (6)
0
1 (6)
0
0
1 (6)
0
5 (36) 3 (27)
0

CRS and ICANS

Two cases of Grade 3 CRS in Phase 1

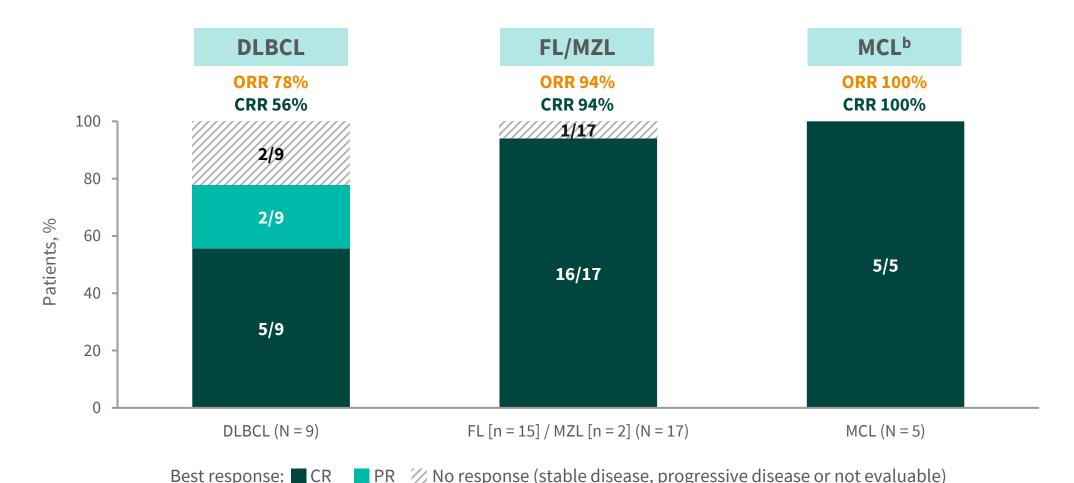
One case of Grade 3 ICANS in Phase 2

Deaths during treatment (up to 14 wks after infusion)

Intra-abdominal hemorrhage, caused by DIC Phase 1, DL2^e

Respiratory distress, caused by disease progression & respiratory infection Phase 1, <DL1^d

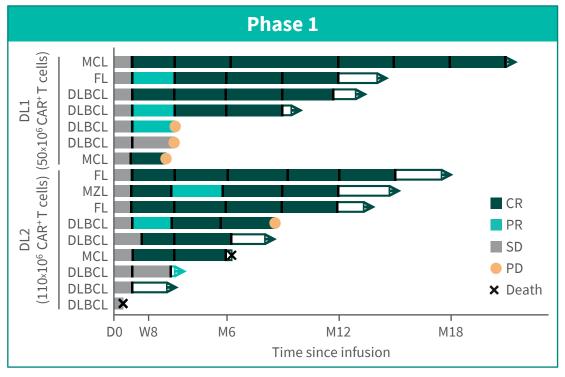
Deaths post-treatment period^g:

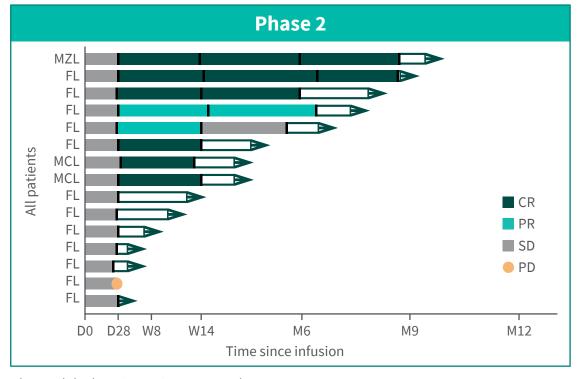

Escherichia sepsis Phase 1, DL2^{e,f}

Data cutoff: December 20, 2023.

alncludes all events related to neutropenia, thrombocytopenia, anemia and lymphopenia. Data available for 15 patients in Phase 1 and 14 patients in Phase 2. Data available for 15 patients in Phase

Efficacy: Pooled Phase 1/2 Results


High OR and CR rates were observed^a



^aBest response at any time after infusion. ^bTwo patients with MCL were not included in the Phase 2 efficacy analysis set as the first response assessment data were not available at data cutoff. Data cutoff: December 20, 2023. CR, complete response; CRR, complete response rate; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; OR, objective response; ORR, objective response rate; PR, partial response

Efficacy: Response Over Time

Durable responses were observed

■

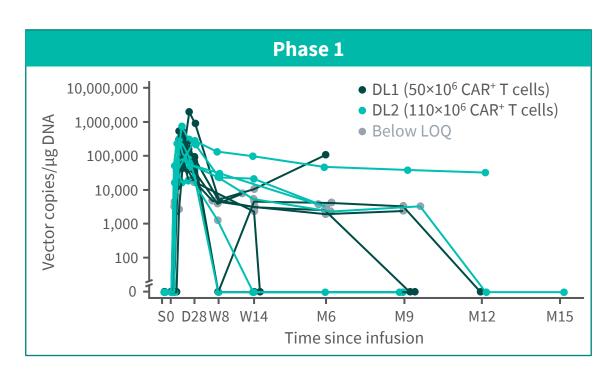
Ongoing response beyond the last timepoint measured

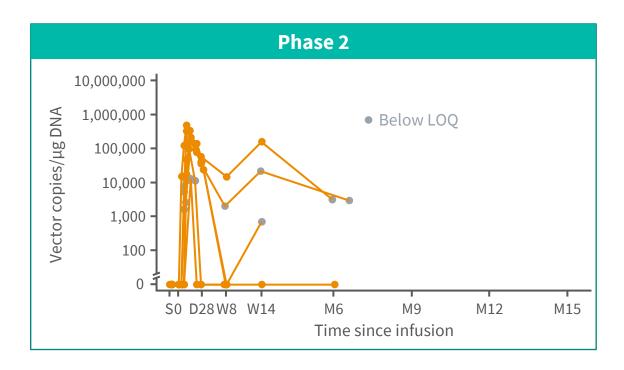
In Phase 1, 10/14 (71%) patients had an ongoing response

Median follow-up in study: 13.1 months (range 0.5-21.0)

In Phase 2, 14/14 (100%) patients had an ongoing response

Median follow-up in study: 4.2 months (range 1.0-9.4)


^aTwo patients with MCL were not included in the Phase 2 efficacy analysis set as the first response assessment data were not available at data cutoff.


Data cutoff: December 20, 2023.

CAR, chimeric antigen receptor; CR, complete response; D, Day; DL, dose level; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; M, Month; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; PD, progressive disease; PR, partial response; SD, stable disease; W, Week

Cellular Kinetics

GLPG5101 demonstrated the ability for durable persistence and robust expansion across doses

11/15 (73%) patients had detectable GLPG5101 in peripheral blood at Week 14 post-infusion

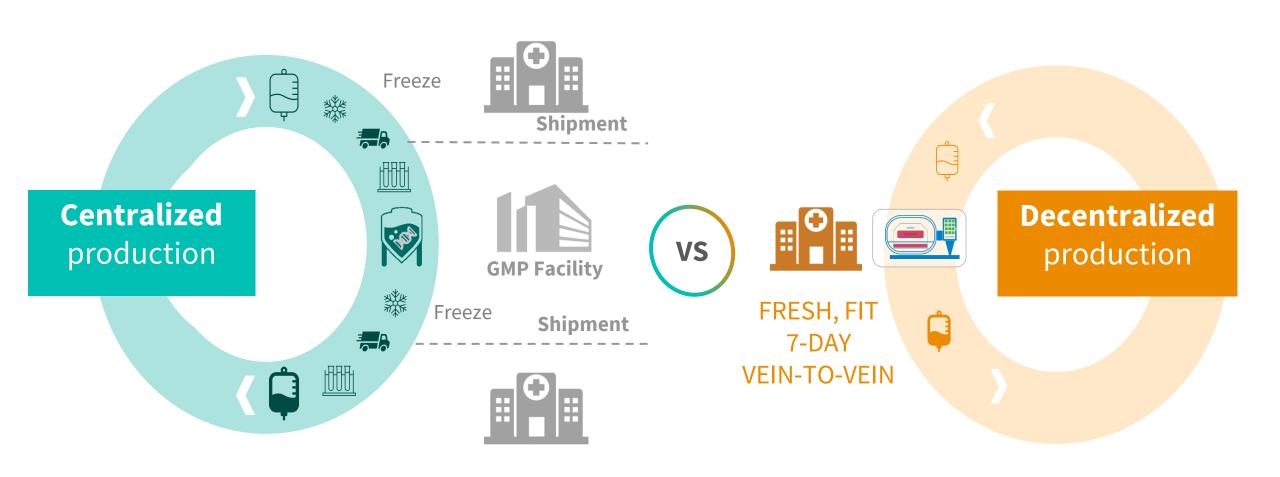
Persisting CAR T cells could be detected up to 12 months post-infusion

Conclusions and Study Updates

- Data from 33 patients with relapsed/refractory NHL enrolled in the ongoing Phase 1/2 ATALANTA-1 study demonstrate that decentralized CAR T-cell manufacturing with a short vein-to-vein time is feasible
- GLPG5101 was administered as a fresh and fit product with a median vein-to-vein time of 7 days
- GLPG5101 demonstrated robust in vivo expansion and durable persistence post-infusion
- The vast majority of CRS and ICANS events were Grade 1 or 2; two cases of Grade 3 CRS and one case of Grade 3 ICANS were reported
- High complete response rates were observed across indications in this heavily pretreated population

Study updates

- The RP2D in FL, MZL and MCL is DL2 (110 (range 50-110) x 10⁶ CAR+ T cells)
- Dose escalation in DLBCL is ongoing at DL3 (250 x 10⁶ CAR+ T cells)
- Additional expansion cohorts of patients with BL^a and PCNSL^a will be treated at the RP2D for DLBCL


^aAfter receiving two or more prior treatments.

BL, Burkitt lymphoma; DL, dose level; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; PCNSL, primary central nervous system lymphoma RP2D, recommended Phase 2 dose; CAR, chimeric antigen receptor; CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; NHL, non-Hodgkin lymphoma

CAR-T CELL THERAPY

DISCUSSION

CAR-T cellsCommercial vs decentralized production

Decentralized production: advantages

Potential advantages

- Fresh product
- Short vein-to-vein time (7 days)
- No need for bridging therapy
- Simplified logistics
- Potentially lower costs
- Improved patient access

- Close partnership between industry & hospital
- Very motivating for Lab of Cell & Gene Therapy
- Integrated production/QC & clinical use

Decentralized production: difficulties

Potential difficulties

- Requirement for academic GMP manufacturing & QC site: facilities, equipment, reagents, staff, QM system, accreditation by regulatory authorities
- If ATMP comes from academic research :
 - Pre-clinical product development
 - Validated manufacturing & QC processes
 - Marketing authorization & pharmacovigilance
 - Funding
- If ATMP comes from biotech company :
 - Tech transfer, training & validation at each site (production & QC)
 - Standardization across multiple sites (production & QC)
 - Quality agreement to define respective responsibilities
 - Financial agreement
- Clinical trials (phase 1-2 vs phase 3) versus commercialization

CAR-T cells Decentralized production : responsibilities

- Research : clinical trials → sponsor
- Commercialization → biotech company vs production site ?

Items

- Management of reagents (other than viral vector) & equipment
- Manufacturing issues : out-of-specification, failure, change control
- QC issues : decentralized vs centralized, change control
- Patient issues : drop-out, unexpected AE, long-term pharmacovigilance
- → Legal & financial responsibility

Decentralized production: cost structure

Biotech company = MA holder

- IP on reagents : viral vector…
- IP on whole production & QC processes
- Centralized data platform
- Long-term pharmacovigilance & unexpected AE

Production site

- Facility building & maintenance
- Staff recruitment & training

To be decided / shared

- Equipment purchase & maintenance
- Management of reagents (other than the ones covered by Biotech IP)
- Responsibilities for OOS, manufacturing failures, patient drop-out

THANK YOU

FOR YOUR ATTENTION!