Paola Ghione, MD Allogeneic Stem cell transplant in PTCL – not a great choice

Paris, March 31st, 2023

Memorial Sloan Kettering Cancer Center

Disclosures:

Consulting and research funds - ADCT therapeutics, Kite, Secura Bio, Genmab, Kyowa Kirin, Astra Zeneca.

...I propose AlloSCT to my eligible r/r PTCL patients...

Algorithmic Approach to Patients with Relapsed PTCL (NOS, AITL, ALCL)

Adapted from Lunning MA et al. J Clin Oncol, 2013;31:1922-1927.

1. Graft vs lymphoma effect

2. Depth of remission before AlloSCT - AlloSCT in first line PTCL

3. Donor type

1. Graft vs lymphoma effect

2. Depth of remission before AlloSCT - AlloSCT in first line PTCL

3. Donor type

1. Graft vs lymphoma effect

Corradini and colleagues 2004

17 patients with PTCL-NOS, AITL and ALCL transplanted from HLA identical family donors (1 MUD)

RIC with thiotepa, cyclophosphamide and fludarabine 14/17 alive at 28 months, 12 in CR

HOWEVER,... relatively high RELAPSE RATE NOTED in larger series:

				20	patients	2	2013	patients	
EBMT+ CIBMTR	PFS 5y:		GRFS 2y: CR/PR2 45%; PD 30%;			r	relapse 3y:		
PFS 3y:	33.370,	RIC 42%;							
MSD 50%;	orradini et Al, JCO 2004	Wul	Wulf 2019126 patientsPFS 3y:						
MUD TCD- 52%	amadani Blood Advances 202 lehta Shah, ASH 2020 lamez Journal of Hematology : /ulf, Bone Marrow transplant 2	PFS							

1. Graft vs lymphoma effect

2. Depth of remission before AlloSCT - AlloSCT in first line PTCL

3. Donor type

1. Graft vs lymphoma effect

2. Depth of remission before AlloSCT - AlloSCT in first line PTCL

3. Donor type

2. Depth of remission at time of transplant

Progression Free Survival 1.0 CR PD PR - SD 0.8 UNK Probability of Survival 0.6 CR 0.4 SD UNK PR 0.2 PD + Censored Logrank p <.0001 0.0 72 168 192 216 24 120 144 240 **Time in Months** 239 146 112 99 86 72 55 43 34 26 21 15 11 5 5 4 3 1 CR 2 2 1 0 PD 14 2 164 72 58 48 34 26 22 15 13 10 7 4 PR 3 2 0 22 14 10 9 9 6 5 4 4 2 1 1 1 1 1 1 0 SD 48 28 23 20 16 10 9 8 6 5 4 4 4 4 2 UNK

Median PFS Median OS in in months Ν months Response (95% CI) (95% CI) 154.2 44.6 CR 239 (17.9-201.5)(72.8-201.5)31.3 8.5 PR 164 (6.1-16.6)(16.8-64.2)12.4 21.0 SD 22 (12.5-NR) (6.0-NR) 8.9 3.5 PD 14 (2.3-51.4)(1.5-11.2)

Responses were based on the treating physician determination (CT or PET/CT)

~ 45% of PTCL patients in CR1 achieve prolonged remission after CT + AutoSCT

Swedish Registry

	Auto-SCT ITT (n = 128)	Non–auto-SCT (n = 124)			
5 yr OS	48%	26%			
5 yr PFS	41%	20%			

D'Amore et Al, JCO 2012 Ellin et Al, Blood 2014 Mehta-Shah Clin Leuk Lymph Myel 2014

AlloSCT in first remission in PTCL?

Randomized phase III trial from LYSA and GLA comparing Auto to Allo for consolidation in first remission

- Halted 2/2 futility at interim analysis
- Underlines the limitations of transplant in CR1 and need for improved upfront therapy

1/3 patients never underwent consolidation

- 32% had disease progression prior to consolidation
- 6/33 (18%) without suitable donor

	Rando	omized	Transplanted		
	Auto	Allo	Auto	Allo	
PTCL NOS	16 (30%)	15 (33%)	11 (27%)	8 (32%)	
AITL	17 (33%)	20 (43%)	16 (40%)	12 (48%)	
ALCL ALK-	9 (17%)	5 (11%)	8 (20%)	3 (12%)	
Other	7 (13%)	3 (6%)	5 (12%)	2 (7%)	

AlloSCT in first remission

Primary endpoint EFS at 3 y. No differences in EFS, PFS, OS but:

In the ITTP, 3y OS was 70% for Auto vs 57% for Allo; PFS was 39% for Auto vs 43% for AlloSCT

AlloSCT in first remission

Hepatosplenic T-cell lymphoma (HSTCL)
North American PTCL consortium data: 12 of 13 HSTCL who achieved long-term survival received AlloSCT

- Adult T-cell leukemia/lymphoma (ATLL)

Largest registry from Japan suggested that early transplant <100 days from diagnosis is associated with better outcomes.

- **Primary cutaneous gamma-delta T-cell lymphoma (pcGDTCL)** improved long-term survival of patients consolidated with AlloSCT in first remission

Shustov AR et Al, Blood 2013 Fuji S et Al. Bone Marrow Transplant 2016 David KA et Al, ASH 2019

Outcomes in relapsed/refractory PTCL

More than 55% of the PTCL will relapse, what are the chances of a CR2?

FDA-approved drugs for r/r PTCL	Overall Response Rate	Complete Remission Rate	ORR PTCL- NOS	ORR AITL	ORR ALCL
Hystone Deacetylase Inhibitors					
Romidepsin	25%	15%	29%	30%	24%
Belinostat	26%	11%	23%	54%	15%
Anti-folate					
Pralatrexate	29%	15%	32%	8%	29%
CD30 targeted approaches					
Brentuximab vedotin	69%	44%	33%	54%	86%

O' Connor OA, et al. *J Clin Oncol.* 2011;29:1182-1189, Coiffier B, et al. *J Clin Oncol.* 2012;30:631-636, O'Connor OA et al ASCO 2013; Horwitz, S et al ICML 2013, Pro B, et al. J Clin Oncol. 2012;30:2190-2196, Horwitz S M et al. Blood 2014;123:3095-3100

FDA approved treatments for R/R PTCL – Progression-free survival

Mak V et al. JCO 2013;31:1970-1976, O' Connor OA, et al. *J Clin Oncol*. 2011;29:1182-1189,Coiffier B, et al. *J Clin Oncol*. 2012;30:631-636, O'Connor OA et al ASCO 2013, Pro B, et al. J Clin Oncol. 2012;30:2190-2196, Horwitz S M et al. Blood 2014;123:3095-3100

Other Therapies in Development in TCL/other targets

Clinical Trials are available for relapsed patients

- Duvelisib
- EZH1/2 inhibitors
- Targeting the JAK/STAT
- Anti CD₄₇ strategies
- Cell Therapies
- ADCs
- Bispecifics

ORR and CR rates look generally better than the FDA-approved compounds in phase 1-2 trials, but duration of response is still an issue

Outcomes of AlloSCT by PTCL subtype

<u>year PFS</u>	
AITL:	47.3%
PTCL-NOS:	43.9%
ALCL, ALK + :	35.3%
ALCL, ALK- :	34.9%

CIBMTR analysis showed in AITL (n=249):

- 4 year OS: 56%
- 4 year PFS: 49%

PFS by subtype

	PTCL-NOS	AITL	NK/T	Hepatosplenic	CTCL	ALCL, ALK+	ALCL ALK-	ALCL, ALK UNK	Subcutanous Panniculitis like TCL	Enteropathy Associated TCL	Primary Cutaneous Gamma Delta	Other
Ν	133	82	20	34	67	18	26	7	11	7	6	97
2-yr PFS (95% CI)	49.6%	56.4%	30.0%	54.7%	33.9%	35.3%	34.9%	14.3%	55.6%	33.3%	33.3%	48.1%
5- yr PFS (95% Cl)	43.9%	47.3%	30.0%	48.6%	18.6%	35.3%	34.9%	14.3%	55.6%	33.3%	33.3%	42.2%

For R/R TCL often PFS = OS post AlloSCT

Overall Survival (OS)

- 2 years: 59.1% (95%Cl: 54.6-63.3%)
- 5 years: 50.8% (95%Cl: 46.1-55.3%)

Progression Free Survival (PFS)

- 2 years: 45.8% (95%CI: 41.3-50.2%)
- 5 years: 39.4% (95%Cl: 34.9-43.9%)

Median time from relapse to death post-Allo:

10.2 mo (0-158.4 mo)

1. Graft vs lymphoma effect

2. Depth of remission before AlloSCT - AlloSCT in first line PTCL

3. Donor type

1. Graft vs lymphoma effect

2. Depth of remission before AlloSCT - AlloSCT in first line PTCL

3. Donor type

Treatment-related mortality (TRM) by donor type

1 yr TRM was 11.2% (95%CI:8.5%-14.0%)

Donor	TRM at 12	95% CI		
	mo			
MRD (n=192)	8.2%	(5.5-12%)		
MUD (n=183)	13.1%	(9.7-17.8%)		
MMD (n=53)	14.7%	(8.7-24.6%)		
Haplo (n=18)	15.9%	(6.0-42.2%)		
Cord (n=25)	23.8%	(13.3-42.6%)		
Other (n=36)	19.0%	(2.8-12.7%)		

- Acute GvHD: 245/489 (46%)
- Chronic GvHD 192/473 (40.6%)
- Increased HCT-CI score was associated with increased TRM (p=0.012)

CTCL - Allogeneic Stem Cell Transplant

Metanalysis of 266 patients with AS CTCL from 5 studies.

- Commonly used RIC or non-myeloablative therapies and TSEB as part of conditioning
- Non-relapse mortality rate was 19%
- Pooled OS rates of 59% (at 1-4 years) were observed in spite of advanced disease in most cases.
- Pooled **PFS rate of 36%** highlights the risk of the disease relapse after allo-HCT.

Iqbal M et al. Biol Blood Marrow Transplant. 2020;26:76-82.

Conclusions

1. <u>Graft vs lymphoma effect</u> \rightarrow probably true for some patients, but very low PFS compared to risks, and only curve that reaches a plateau is AITL

2. Depth of remission before AlloSCT \rightarrow extremely unlikely to obtain CR and maintain

- AlloSCT in first line PTCL \rightarrow not recommended except rare cases

3. <u>Donor type</u> \rightarrow Cord, Haplo MMD unfortunately have very high TRM

4. <u>Treatment-related mortality</u> \rightarrow Particularly high in CTCL (19%), with PFS of only 36%

Thank you!