

Virome et Transplantation

SFGM-TC Scientific Day - October 20, 2022 « The gut microbiota »

Pr Jerome Le Goff – jerome.le-goff@aphp.fr

Pr Jérôme LE GOFF

Université Paris Cité

Institut de Recherche Saint-Louis

Inserm U976 - HIPI - Equipe Insight

Virology - Hôpital Saint-Louis, AP-HP. Nord

jerome.le-goff@aphp.fr https://hipi-lab-saint-louis.fr/

Disclosure Statement

No conflict of interest with this presentation

Virome

- Resident viruses (chronic infections)
- Exogenous viruses (transient infections)
- Endogenous retroviral elements
- Unclassified sequences
- D Pathogenic viruses ?
- Commensal viruses ?

Virome composition

10¹⁵ phages in the human intestine
 dsDNA Caudovirales & ssDNA *Microviridae*

1 g of stool →10⁸ - 10⁹ viruses

99% phages 1% animal/plant viruses

Gut viromes are unique to individuals *Reyes A et al. 2010* Healthy gut virome stable and dominated by phages Variation between subjects according to the diet *Minot S et al. 2013*

↑Eukaryotic portion according to disease status

DiarrheaPhan TG et al. 2012Flacid paralysisVictoria J G et al. 2009

Normal blood Virome

8240 individuals

Limits of detection of viruses

Mutation rate

No « 16s » viral gene

Virus genome sizes < 10^e2 – 10^e4 / bacteria < 10^e4 – 10^e6 / eucaryotes

Human cell depletion Bacteria depletion VLP enrichment

オ reads

Amplification methods DNA & RNA

Limits of detection - Viral datbases

Abbas et al., 2019, Cell Host & Microbe **Redondoviridae**, a Family of Small, Circular DNA Viruses of the Human Oro-Respiratory Tract Associated with Periodontitis and Critical Illness.

Limits of detection - Viral datbases

Cell

Resource

Expansion of the global RNA virome reveals diverseclades of bacteriophagesNeri et al., 2022, Cell 185, 1–15

Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a <u>5-fold increase of the known RNA virus diversity</u>.

The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for <u>a third of the RNA virome</u>.

Enteric Viruses and Colitis

Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease

Cell

Norman et al., 2015, Cell 160, 447–460 32000 reads / sample

- The enteric virome richness increases in Crohn's disease and ulcerative colitis
- Decreases in bacterial diversity and richness in IBD do not explain virome changes
- Virome changes in Crohn's disease and ulcerative colitis are disease specific

Enteric Viruses Ameliorate Gut Inflammation via Toll-like Receptor 3 and Toll-like Receptor 7-Mediated Interferon-β Production

Jin-Young Yang et al

Illumina 900,000 reads for DNA 690,000 reads for RNA

Enteric Viruses and Colitis

Jin-Young Yang et al. Immunity 2016

BALB/c wild-type (WT) mice +/- antiviral (AV) cocktail (ribavirin, lamivudine, acyclovir) 10 days + dextran sodium sulfate DSS treatment

- Pre-treatment with an antiviral cocktail results in severe colitis
- Treatment with TLR3+7 agonists and inactivated rotavirus ameliorates colitis
- TLR3 -/- TLR7 -/- mice are more susceptible to colitis

Gut viruses → TLR3 or TLR7 **7** IFN-beta inflammation

Virome et Transplantation

Heart and lung transplant

Blood virome – De Vlaminck et al, 2013. Cell 96 Heart/Lung transplant pt – 656 samples

> a: Superkingdom Bacteria 25% Eukaryota 2% Viruses 73% b: Viruses: order and family Herpesvirales 13% Caudovirales 5% Adenoviridae 2% Anelloviridae 68% Polyomaviridae 5% Poxviridae 1% Retroviridae 1% Other 5% <u>c: Anelloviridae: genera</u> Alphatorquevirus 97% Betatorquevirus 3%

Heart and lung transplant

Temporal change of the virome De Vlaminck et al, 2013. Cell

No change of the bacterial microbiome over time

Impact of antivirals & immunuosuppressants

Tacrolimus-based antirejection protocol (47 patients and 380 observations)

Correlation with graft rejection

↘ Anellovirus burden in patients with graft rejection

Alternative marker to measure level of immunosupression

Lung Transplant Young, Am J Transplant. 2015

Anellovirus 56-fold more abundant in BAL from lung Tx

Anellovirus loads correlated with dysbiotic bacterial communities

Virome in the Lungs: The Role of Anelloviruses in Childhood Respiratory Diseases. Giulia Dodi et al. Microorganisms. 2021.

Lung Transplant

Metagenomic sequencing reveals time, host, and body compartment-specific viral dynamics after lung transplantation. <u>Widder et al. Microbiome 2022</u>

Α

B

Higher taxonomic diversity in plasma samples compared to BALF

С

Lung TransplantWidder et al. Microbiome 2022Exclusive viral communities in BALF and plasma

Lung TransplantWidder et al. Microbiome 2022Exclusive viral communities in BALF and plasma

Recipients' underlying disease imprints long-term plasma virome structure

Blood virome in hematopoietic stem cell transplantation

Vu DL et al. Clin Microb Infect 2019

1 month after transplantation

Virus and Graft versus host disease

Viruses & GvHD

Herpesviruses

- CMV (Blood) CMV 7 2X GVHD risk Cantoni et al, 2010
- HHV-6 (Blood) Pichereau et al., 2012, Zerr et al., 2012
- HSV-1 (Skin CD34+ PBMC) Akpek et al,.2013
- EBV serostatus. D+/R+ HR=1.24 J Clin Oncol. 2016 34(19):2212-20

Adenoviruses

Mechanism ?

Virus mimicry \rightarrow Up to 45% of virus specific T-cell clones crossreact against allogeneic HLA molecules (Amir AL, Blood. 2010)

Gut Virome in HSCT

The eukaryotic gut virome in HSCT : new clues in enteric GvHD. Nat Med. 2017 Sep;23(9):1080-1085.

Median % of viral reads = 0.22%

→ Eukaryotic viruses =1.76% of viral reads

IQR. 0.16–21.3% Range. 0–99.9%

Vertebrate viruses = 86.9% - Plant viruses = 12.1%

Gut Virome in HSCT

The eukaryotic gut virome in HSCT : new clues in enteric GvHD. Nat Med. 2017 Sep;23(9):1080-1085.

10

5

Enteric GUHD

5

Gut Eukaryotic viruses

- \rightarrow Increase of vertebrate viruses
- \rightarrow Increased rates and loads of persistent viruses in patients with GvHD
- \rightarrow Detection of **Picobirnavirus** predictive of GvHD Time dependent Cox model (HR:2,66)
- \rightarrow Picobirnavirus associated with enteric inflammation
- Fecal calprotectin alpha1 antitrypsin

Picobirnavirus – Eukaryotic virus or Phage

EUKARYOTIC ?

Detection in stool samples of AIDS patients Detection in stool samples of many mammalian analian Picobirnavirus related to Partitivirus (yeast and Duquerroy S et al. EMBO J. 2009.

PHAGES ?

Presence of prokaryotic ribosomal bindi

- Krishnamurthy SR, Wang D. Virology. 2018
- Boros Á et al. Virology. 2018
 Ribosomal binding sites -10 -15 nt upstream 4 mers (AGGA, GGAG, GAGG) - 5 mers (AGGAG, GG

Identification of CRISPR spacer matches picobirnaviruses and partitiviruses, prev hosts.

Neri et al., 2022, Cell 185, 1–15

st		Le	eng	nber of ruses alyzed	
, Ÿ	Taxonomy	4	5	6	Nun Vi An
?	Picobirnaviridae				81*
	Sphaerolipoviridae				5
	Plasmaviridae				1
	Podoviridae				259
	Leviviridae				11
	Siphoviridae				667
	Cystoviridae				5
	Myoviridae				355
	Microviridae				16
	Tectiviridae				4
	Inoviridae				36
	Turriviridae				2
	Fusel l oviridae				10
	Nyamiviridae				4
	Astroviridae				33
	Benyviridae				3
	Corticoviridae				1
	Lipothrixviridae				8
	Flaviviridae				76
	Globuloviridae				2
	Papillomaviridae				127
	Retroviridae				61
	Luteoviridae				29

RBS

RBS											
-	st	Length			ber o uses lyzed						
=	Taxonomy	4	5	6	Num Vir Ana						
	Coronaviridae				43						
	Betaflexiviridae				70		Prokaryotic				
	Paramyxoviridae				51		Virus Family				
	Arteriviridae				9		Eukonyotio				
	Alphaflexiviridae				45						
	Asfarviridae				1		Virus Family				
	Tombusviridae				57						
	Dicistroviridae				17						
	Geminiviridae				334						
	Totiviridae				41						
	Bunyaviridae				131						
	Togaviridae				24		(0				
	Rhabdoviridae				81		1 ຍິ				
	Filoviridae				7		o e				
	Iridoviridae				16		Bac				
	Phycodnaviridae				16		L C				
	Secoviridae				42		air				
	Endornaviridae				17		erc				
	Orthomyxoviridae				2		a S				
	Birnaviridae				6		ge nat				
	flaviridae				18		th				
	Malacoherpesviridae				1		0 🎽				
	Potyviridae				123		4				

Different gut virome dynamics in patients with or without GvHD

Decrease in Microviridae – similar to phage dynamics in IBD

Expansion of vertebrate viruses after HSCT

- Increase of persistent DNA viruses in GvHD
- Stability of persistent DNA viruses in patients without GvHD
- Picobirnavirus detection marker of GvHD

Virome & Transplantation

- Clusters according to underlying disease
- Compartmentation and temporal dynamics of viromes
- Viruses /virome predictive of graft versus host disease
- Phages / RNA virome and interactions with microbiota and eukaryotic viruses poorly understood

Virome & Transplantation

- Clusters according to underlying disease
- Compartmentation and temporal dynamics of viromes
- Viruses /virome predictive of graft versus host disease
- Phages / RNA virome and interactions with microbiota and eukaryotic viruses poorly understood

Acknowledgments

HSCT Team - Saint-Louis hospital

Biostatistics Unit

Virology laboratory

USCF - Viral Discovery & Diagnostic Center (VDDC)

INSIGHT team – Inserm U976

University of California San Francisco

advancing health worldwide"

HIP Human Immunology Pathophysiology Immunotherapy